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We derive the necessary and sufficient conditions for the evasion of a point in 
a nonlinear second-order differential game, These conditions are defined con- 
cretely for the case of a linear differential game. The paper is related to@-61, 

1 l We consider the second-order system 

dxidt = F (x, u, v>, uEU, VEV (1.1) 

Here x is a phase vector, tk (v) is the first (second) player’s control, The function 
F (a, G, V) is continuous in all its arguments and satisfies a Lipschitz condition in X, 

U and v are closed bounded sets. We assume that for any E and any v E 17 the set 

F (x, U, v) =. U, P (x, u , v) , u E U, is convex. By the termination of the 
game we mean the hitting of system (1.1) into a certain preassigned point rn,. We assume 
that a vector ,!J exists for which the scalar product p$‘, (m, u, v) + peF, (m, It, 
ti) < 0 for all 11 E U, u +EZ I-. 

Let “the realization tif -f *’ be an arbitrary measurable function ok (5). b, < t < w 

satisfying the condition u (t) E U for any t, We shall assume that when t > to the 
second player can collide with any realization u (-). He should choose his own control 

by means of the descrete scheme (V [CC], A }_ The discretum A > 0 defines the size 

of the semi-interval t* < t < 1” + d during which the control t; T= u fs ft*)] is 

held citnstant, By T IX,; u [XI, Ai zt (-)I the transition time of system (1-l) to point 
m from an initial position X0 2 5 fl,,) under the discrete scheme {V (~1, A} and the 

realization !A (e). If such a transition is not possible, we set TkO; u 1~1, A,zL( .)J = us. 
Definition. An evasion is possible in the game if there exist functions u* [Xl, 

A ix,,1 such that for any .rl) + & and for all A & A [xrl], u (.) the time 1’ IT(,; 

17 iri, d, II (*)I --~ CG. 

2. Without loss of generality we assume that the origin of the rectangular system 
of coordinates q, x2 coincides with r)t, and that the vector p is directed along the 
zi -axis. Let Cl be a closed circle with center at m, for any point .z’ of which we have 

F, (.t., II., U) < 0 (2.2) 
for all u, e Cf, 0 Ei F. We set 
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Lipschitz condition in x for the function F (2, u., V) it follows that the functions 

f* (x), f.+ (x) satisfy in 0 a Lipschitz condition in I. Let x2 7~ $* (*Xl) (X2 = 

I#.+ (&)), X1. > 0 be a solution of the equation 
&c,/&r, = f* (x) {~~s/~~~ = f* (x))with the 

initial condition x2 (0) = 0, continued up to the 

boundary of circle 0. We denote the graph of this 

solution by r* (r*). We say that r* > i * if at 
the intersection of the positive semiaxis of Zr with 

circle 0 we can find a monotonically decreasing 
sequence of points {3Jin)) converging to zero, for 

which $* ($‘) > $* (&“)) for any IZ Other- 

wise we say that r’* < rc. 

Theorem ‘2.1. For evasion to be possible 

it is necessary and sufficient that the condition 

Fig. 1 l 

r* > r* be satisfied. 

The proof follows from Lemmas 2.1, 4.2. Let 

f(l) (X, u) = min, f (z, u, u), f(s) (z, u) = maxu f (z, U, u) 

t E 0, uEEU, VEV 

Le m m a 2. 1. If r* < r*, evasion is impossible. 
Proof. Since r* < r*, we can find a number q > 0 such that $* (sr) & $* 

(51) for x1 E Lo, q]. Let 0” be the interior of circle 0, We set (see Fig. 1) 

UCZ) (X, 0) = (U : 24‘ E u, f (5, a., u) = fci) (3, Y)), i = I,2 

U(l) (x, U) if XEE 

U(X, U) := U@)(s, v), 

I 

if xE K 

u, if s~tll \(K IJ E) 

For every u & V the set U (5, U) is upper semicontinuous relative to inclusion with 
respect to x in .M (see [7], Theorem 1.1). Consequently, the set F (,c, V) -_ U,F (x, 
u, v), u E U (2, v) , possesses an analogous property. From the convexity of set 
F (2, U, u) for all z E M, u E V follows the convexity of set J’ (1, v) for all 
.z E M, U E V. 

Let us consider the differential equation dz/dt E 1: (3, u). For any mitial condition 
.T,, E &f and for any constant u E I/ it has at least one solution [8]. Since f(i) (J, 

v) < f” (2:) (f’“’ (2, t’) > f* (2~. I>)) in ,& (K) , any solution J (t) starting at an 
arbitrary point x,, == J (I,,) 6:‘ c does not go, for t > t,, , above (below) the curve 
r* (r*) till the first instant I” of reaching the boundary of set H . Consequently, the 
solution stays in c‘ and hits point m in the time t* - t, < it = q J’ j, where j := 
Illill 1 F, (.I., 77,) 0) 1 on the product (1 X u x 1’. As follows from the lemma (in 
[9], p.271, from the solution .r (I) we can select a measurable function IA(!), (EIl,,,l*1, 
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Fig. 2 

wilh values in the set U (1. (1), LJ), such th31 

the solufion of the equation dx/& = f+’ (2, 

II(~), U) (x0 and u are 3s before) coin- 
cides with x (t) on the interval [to, t*] . 

From what we have said it follows that for 
any 23 E C and for any descrete scheme 
(U ]z], A) we can find a realization u (a) 

for which the timeT ]z,,; u fz],A,n (.)I< 
6. Evasion is impossible. The proof is com- 
pleted. 

By V* (x) ( V, (s)), x cz 0, we denote. 
the maximal collection of vectors U E: V 
on each of which the maximum (minimum) 

is reached in (2.2) ( (2.3) ) . 

Lemma 2.2, If r* > r+, evasion is 

possible, 
Proof. Let [O, q] be the largest com- 

The notation introduced is clarified in Fig. 2. The solid (dotted) line shows the curve 

r* (r.+), the dashed-dotted line shows the curve xs = $ (xi), xl ~2 ](I, y]. We define 

any ztEf’,(z), if rEK 

no [z] = 

/ 

any VEi’*(r), if SEE 

3nY VE I’, if sgKl,Jh’ 

l)tetz,=~ft,)&(il~\{m})\Hand let the second player apply the 
discrete scheme {u’ [z], A}. A s a consequence of (2.1) and of the fact that on the pro- 

duct 0 X z/’ x V the function 1 f (2, 14, u) 1 is bounded from above by the num- 

ber G = mas ] f (s, II, v) 1, we obtain that for all A, u (a) the motion z (t) of 
system (1.1). from the instant to up to the first instant 1* of reaching the boundary of 

set M, goes in the sector (JZ : G (xl .- .rlo) + ;I’.,,, < x1 -2= I -_G (q - IN) + Xtor 

21 < xl,}, and hence 
]J:@H> &q&J t c [cl, 1*1 (2.4) 

2) Let y =T- 5 (t,) E E and let a constant 1~ z~- tt [I, 1 and an arbitrary realization 
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16 (e) act on the semi-interval It *, t, +- A), where A is fairly small. Let us estimate 
the function u(‘) (x (t)), t E [t*, t, + A). Since f* (y) = f(l) (y, u” [y]) and the 
functions f* (x), f(l) (x, u) satisfy a Lipschitz condition in 2 (with a common constant 
Ic), we have 

f* (x (t)) - f (x (t), ZJ (t), zJn [!/I) G 

f* (r (t)) - f(l) (r (% zJ” [Yl) < 

I f*@ (4) - P (!I) I + 1 f(l) (YIVO [Yl) - 
f’l’(5(% a/l)I<2kIJ:(t)-Yl~ (2.5) 

2kA’A, t ez It*, t, f A), 

where N = max 1 F (5, u, v) ( on 0 y, U x V. From (2. l), (2.5) it follows that 
on the semi-interval [t,, t, + !\) the motion s (t) with any u (-) does not go above 

the integral curve of the equation dx,!dxI = f* (x) - 2k.VA, drawn through point y. 
Since the curve r* is an integral curve of the equation dx,!dx, = f* (cc), issuing from 
the point m, then 

w(l)(x(t))> (o(l)(y) + 2NA)exp(- kJx,(t) -yll) - 2NA 
t= [h, t, -t A) (2.6) 

Analogously.if y = x (t*) E K and if a constant u = V” [yl and an arbitrary rea- 
lization u (.) act on the semi-interval [t,, t, + A), where A is fairly small, then 

o@)(J: (f)) > (~(~1 (y) -/- 2NA) exp (- k 1 x1 (t) - y1 I) - 2NA 
t E It*, t, + A) (2.7) 

Let x,EH. Weset 
x (x0) = maxX, (.s (x1) csp (- Jiz,)) (2.8) 

x1 E [O,~,ol 0 D 

The smallest x1 at which the maximum in (2.8) is reached , we denote by a (x0). We 
fix an initial position x0 = x (t,) E H and assume that the second player applies 
the discrete scheme {li’ [xl, A} , where A < A lx,1 and A [x,J is fairly small. 

Suppose that up to the first instant of intersection with the strai’ght line x1 = a (.x0) 
the motion z (t) from point x0 takes place in H and that the indicated intersection 

occurs at some I th semi-interval of the discrete scheme (I is a positive integer depend- 
ing on A a.ld zc (.)) . From the definition of function U” [x] and from inequalities 

(2.6). (2.7), we obtain that for a fairly small A [x,1 the motion ,r (t) for all A < 
A [x,1, ZL (s), from the instant t, = t, + A (I - 1) up to the first instant t, of leav- 
ing H , goes at each discretum A either strictly above the curve r* or strictly below 
the curve r* , and 

max {w(l) (J: (t)), 6JC2) (x @))I > x (G) - E (4) (2.9) 

Here and below t (A) denotes a positive first-order infinitesimal as A -+ 0. Since the 

functions 1 f* (x) (, 1 f* (:I$ ( d o not exceed the number G, the maximum h (t) of the 
distances from point x (t) up FG the curves r* , r* at the instant t is estimated bv the 
inequality 

^A. 

a (4 > & 

def 

-E(A) = ~(i”o, A) (2.10) 

From (2.4),(2.9),(2.1!) it follows that for any t > t, we have 1 x (t) ) 2 p fro, fi). 
up to the first instant t* of departure from M . Obviously, on the interval It,, 1*J we 



have 1 .I’ (I) / > min {p (x,,. A), FY. (J,,) }. sinct: rx (z,,) 2 s (CI (./,,,)):G >p ($~,,,a), 
then 

/ .I‘ (f) 1 > \I, (.Y@. A). I E If,), r*l (2.12) 

Thus, if x0 = .X (!a) E f1 and if the second player applies the discrete scheme (v [z]. 
A}, then for fairly small n ].r,,] the motion of system (1.1) for all A < A [x,], u (*j 
cannot approach the point m , on the interval it,,, t*], where t” is the first instant of 

departure from n/, closer than at the distance p (z,,, A) = x (z,)/fil + 6” - E (b). 

3) For x1 EJ D we set 

vci) (q) = min, ((o(‘) (y) oxp {-- kzjr)) 

Y~IY:Y~;~‘,2JI~~~liC),51j,i!ffi)(!~)>I)f, i=1,2 

v (5r) - s (5r) exp (- ks,), 3c = maxsl min \c+) (q), v(s) (Xi), v (q)) 

Using the results of items (l), (2) we can show that if x,, = z (to) en/l and if the 
second player applies the discrete scheme {u” [rc], A }? then for all A 4 6, 76 ( * ) , 
where 6 > 0 is fairly small and independent of x0, 

(2.12) 

From (2.4), (2.11),(2.12) we obtain that for any zO =#= ?ZZ we can find h [~a] such 
that for all A & A [LX,,], u (.) the time .?’ [x0; $’ [z], A, 14 (.)I = 00. The proof 
is completed. 

It is evident that r* > r* (r-* 4 r*) when f* (m) > f* (m) (f* (m) < 
f.+ (m)), therefore, from Theorem 2.1 follows - 

Corollary 2.3. If f* (m)>f+ (m) (f* (m)<f*(m)), thenevasionispos- 

sible (impossible). 

3. Let us consider the two-dimensional system 

dxldt = Ax + u - II, UE u, VE v (3.1) 

Here A is a constant P x3 matrix, u and I/ are closed bounded convex sets. We assume 

that U n V = si, and that at least one of the sets u or 1/ is a polygon. We take the 
origin as the point m I Theorem 2.1 is valid for system (3.1) under the stated assump- 
tions. Below we indicate simpler necessary and sufficient evasion conditions for system 

(3.1) than the conditions in Theorem 2.1 e We select the coordinate system and the cir- 

cle (J in the same way as in Sect.3. We denote the straight line 2s = f* (mf xl by 

p, aud its part,when zr > 0 by a. 
Theorem 3.1, For evasion to be possible it is necessary and sufficient that at 

least one of the following two conditions be fulfilled : (1) f* (m) > f* (m), (a) 
j* (m) :- f* (m) and there exists a circle L c 0 with center at point m, such that 

f*(~)>f*(~)foranyzE:: n L. 
An analogous theorem was stated in [6] in somewhat different terms and under stricter 

assumptions. The theorem’s proof is based on Lemma 3.1 which is considered below. 

Assume that f* (m) = f* (m) and let the straight line fi not be invariant relative to 
the transformation A corresponding to matrix il. Then the set Y lzi {.r : .*I 1’ E fi} 
is a straight line passing through point m and not coinciding with p. That one of the 

halfplanes defined by the straight line ?J, which contains the the half-line a. is called 

r. We do not include the straight line y in the halfplane i‘. Let c (l)-: f.1. : r E 0, 
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1 z 1 < I}, 1 > 0 . If f* (m) == f* (m) and the straight line p is invariant (is not 

invariant), we set D (I) = C (I) f-l fi (D (1) = C (2) n r). 
Lemma 3.1. Let f* (m) = f* (m). Then there exists a number I’ > 0 such 

that either f* (a) > f* (x) for any J: E D (b”) or f* (z) & f.+ (2) for any z E 

D (1”). 
Proof. If the straight line fl is invariant, the lemma is obvious. Suppose that the 

straight line fi is not invariant. Since f* (m) = f* (m), for all u* E V* (m) and v* E 

V, (m) the sets -U + u* and - U + v* are separated (but not strictly) by the straight 

line fi. We set 
P(v)=(--+-t)nP 

p* = max t) min (1 w I : 20 E P (@I, tlE-*(N (3.2) 

p* = minv max {I w ( : w E P(u)}, v E V, (m) (3.3) 

Three cases are possible : (1) p* > p*, (2) p* < p*, (3) p* = p*. The transformation 

A maps the halfplane l? into one of the halfplanes defined by the straight line fi. We 

denote it by B. The straight line fi does not occur in B. Below the analysis of cases 

(l)-(3) is carried out under the assumption that the halfplane B lies above the straight 

line fi (see Fig. 3). The arguments are analogous if it lies below. 

We set 
cp (2, II, 1.) = 

21 Lo II? - 2)r 
z1 + IL1 - VI 

cp* (z) = maxv mintL cp (z, u, 7’) (2. i) 

v* (z) = mirlV max, (0 (2, IL, !:) (S.r,) 

2 E .,I (O), u E ci, 2) E 1’ 

By h” (h,) we denote the vector v E V* (nt) (v E 1’, (m)), on which the maximum 

(minimum) is reached in (3~2) ((3.3)). In case (1). 1’ (h+) n 1’ (h,) = a. Therefore, 

(- u + h*) fl (--- u m:- h,) = 0. Consequently, we can find a sufficiently small lo > 0 

such that for any z E K (lo) = C(l,)rlB 

cp* (z) > minu cp (z, u, h*) > maxll ‘p (:, I( 3 b) >, cF* (z) 

UEU 

By virtue of the continuity of transformation .4 and of the equalities j* (.r) = ‘p* (, I.r), 

j* (2) = cp* (. IX) there follows the existence 

of a sufficiently small I- > 0 such that for 

any s E D (lo) we have j* (s) > j* (r). 

In case (2) we show the existence of 1, > 

0 such that for any z E K (1,) 

‘p* (z, < cp* (2) (.3.6) 
m v “1 

+ 
/’ 

l\, I- 

We assume the contrary. Then we can isolate 

a sequence {z[‘~‘J of points from Rc,~), con- 
“.\. y verging to nz, for which ~3: (~0~)) > cp$: (z@)) 

Fig. 3 
for any II. With each point JI’) we associate 

the pair (c(‘~), 13 ), where i.(,‘) (21,)) is an 

arbitrary vector from I- on which the maximum (minimum; is reached in (3.4) ((3.5)) 

for z -: z(@ From the sequence (u(“), n,,} we select a convergent subsequence {u(‘~). J.~!}. 

Let (DO, v,,) be its limit. It is obvious that 27” E I’* (na), 2,” E I-, (I))). Since the segment 
1?‘0’) = l’ @*) _+_ u (~i‘~ _~ jL* c _ u -i_ J/i) lies in the sector 

{z : q* (;(Q) (Ti, - ZP) -t ,p < x2 <p (1f1) ,2c, I 



while the segment B, :m= I-’ (ii*) -I- vk -- h, c - IJ + I,,, lies in the sector 

{5 : /* (m) 21 < 52 < ‘p* (z’k’) (21 - 21 (k)) + z,‘k’) 

From the conditions ‘p* (z(k)) > (p* (c”“), k = 1, 2,. . . 

P (vo) = lim E, 
k+bs 

we obtain that 

P (210) =l~tf(? 

min (1 10 1 : w E P (V’)} > max {I u) I : 2s E P (Vo)} 

The latter contradicts the condition p* < p*. Thus, (3.6) is valid. From (3.6) follows 

the existence of 2” > 0 such that f* (5) < f* (5) for any x ED (1’). 

In case (3) the intersection P (h*) n P (h,) consists of one point which we denote by 
the letter h. We assume at first that tne set U is a polygon. There are two possibilities: 
(3a) the boundary of set V is tangent at the point /a* to the straight line xa - AZ* = 

f* (4 (9 - hi*), from the right, or else it is tangent at the point h, to the straight line 

29 - hz. = f* (m) (~1 - hi,); from the left ; (3b) condition (3a) is not satisfied. 
In case (3 a) we assume, for definiteness, that the tangency is from the right at the 

point h*. Let x be an arc of the boundary of set V, abutting h* from the right. It is 
not difficult to see that if the arc x is fairly small, then for any v E x the set - U + 

V- (U is a polygon) lies above the arc x f b - h *. Consequently, for a fairly small 

Zo > 0 
‘p* (4 > s z ‘p* (4 (3.7) 

for any z E K (I,) . Case (3a) is shown in Fig. 3. The numeral I (I I) denotes the set 

-U-f+* (- U + he), the numeral 1 (2) denotes the segment P (h*) (P (h,)). 
The arc x + b - h* is denoted by numeral 3. 

In case (3a), for a fairly small 1” > 0, 

‘p* (2) = s = ‘p* (2) (3.8) 

for any z E K (1,) . From (3.7) ((3.8)) it follows that in case (3a) ((3b)) there exists 
1, > 0 such that f* (x) > f. (2) (f* (2) = f. (z)) for any r E D (I”). If set 1; is a po- 
lygon, then for fairly small I, > 0 

and, hence, there exists 1” > 0 such that f* ( z < f* (x) for any z E D (1’). The proof ) 
is col1lpleted. 

We return to Theorem 3.1. Let condition (2) of Theorem 3.1 be satisfied (let 
I* (m) = f* (m), but let condition (2) not be satisfied). Then, by Lemma 3.1 there 

exists 1’ > 0 such that f* (z) > fa (x) (f* (x) 6 f* (x)) for any x E u (1”). 
From the geometry of set D (1) and from the definition of curves r* , r* it follows 
that in this case r* > r* (r* & r*). Theorem 3.1 now follows from Theorem 2.1 
and Corollary 2.1. 

The author thanks N. N. Krasovskii for attention to this paper. 
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ON AN ESTIMATE IN A DIFFERENTIAL GAME OF ENCOUNTER 

PMM Vol. 36, w6, 1972, pp.1015-1921 
A. G. PASHKOV 

(Moscow) 
(Received July 5, 1972) 

We consider the game problem of the encounter of a conflict-controlled phase 
point with a specified target set M. We give an upper bound of the result 
achieved by feedback control in nonregular cases. The construction is based 

on the ideas in [ 1, 21. 

1. We consider a controlled system described by the differential equation 

I.’ = A (t) x $- B (t) u - C (t) v (1.1) 

Here 5 is the system’s n-dimensional phase vector; _4 (t), B (t) and c’ (t) are con- 
tinuous matrices ; u and 1; are the r-dimensional vectors of the controlling forces at 

the disposal of the first and second players,respectively. The realizations ZL ltl, u ltl 

of controls 11 , u are constrained by the conditions 

u ItI F= P, u[tlEQ (1 *a) 

where 1' and Q are closed, bounded, and convex sets. We examine the conflict prob- 

lem of the encounter of the point IC [t 1 with a specified closed convex set AT: the first 
player’s aim is the encounter, the second player’s aim is to prevent it. The problem is 
considered on a fixed time interval It,, 61. As the game’s cost we choose the quan- 
tity 

y = p (z [61, M) (1.3) 

where the symbol f’ (x, ill) denotes the distance from point x to set hl. We shall 
adhere to the definitions presented in [l] for the player’s strategy classes and for the 


